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The Exceptional Jordan Eigenvalue Problem

Tevian Dray1 and Corinne A. Manogue2
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We discuss the eigenvalue problem for 3 3 3 octonionic Hermitian matrices
which is relevant to the Jordan formulation of quantum mechanics. In contrast
to the eigenvalue problems considered in our previous work, all eigenvalues are
real and solve the usual characteristic equation. We give an elementary
construction of the corresponding eigenmatrices, and we further speculate on a
possible application to particle physics.

1. INTRODUCTION

In previous work [1±3] we considered both the left and right eigenvalue

problems for 2 3 2 and 3 3 3 octonionic Hermitian matrices, given explic-

itly by

!v 5 l v (1)

and

!v 5 v l (2)

respectively. We showed in ref. 1 that the left eigenvalue problem admits
nonreal eigenvalues over both the quaternions H and the octonions O , while

the right eigenvalue problem admits nonreal eigenvalues only over O . Some

of the intriguing properties of the eigenvectors corresponding to these nonreal

eigenvalues were considered in ref. 3, and in refs. 4 and 5 we discussed

possible applications to physics, including the remarkable fact that simultane-

ous eigenvectors of all three angular momentum operators exist in this context.
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However, the main result in [1] concerned real eigenvalues in the

3 3 3 octonionic case. For this case, there are 6, rather than 3, real eigenvalues

[6 ]. We showed that these come in 2 independent families, each consisting
of 3 real eigenvalues which satisfy a modified characteristic equation rather

than the usual one. Furthermore, the corresponding eigenvectors are not

orthogonal in the usual sense, but do satisfy a generalized notion of orthogo-

nality (see also [2, 7 ]). Finally, all such matrices admit a decomposition

in terms of (the ª squaresº of ) orthonormal eigenvectors. However, due to

associativity problems, these matrices are not idempotents (matrices which
square to themselves).

It is the purpose of this paper to describe a related eigenvalue problem

for 3 3 3 Hermitian octonionic matrices which does have the standard

properties: There are three real eigenvalues, which solve the usual characteris-

tic equation, and which lead to a decomposition in terms of orthogonal

ª eigenvectorsº which are indeed (primitive) idempotents.
This is accomplished by considering the eigenmatrix problem

! + 9 5 l 9 (3)

where 9 is itself an octonionic Hermitian matrix and + denotes the Jordan
product [8, 9 ],

! + @ 5
1

2
(!@ 1 @!) (4)

which is commutative, but not associative. We further restrict 9 to be a

(primitive) idempotent; as discussed below, this ensures that the Jordan eigen-

value problem (3) reduces to the traditional eigenvalue problem (2) in the

nonoctonionic cases.

The exceptional Jordan algebra of 3 3 3 octonionic Hermitian matrices

under the Jordan product, now known as the Albert algebra, was extensively
studied by Freudenthal [10±12 ],3 and is well known to mathematicians [13±

16 ]. In particular, the existence of a decomposition in terms of orthogonal

idempotents, and its relationship to the eigenvalue problem (4), was shown

already in ref. 9. Furthermore, since any Jordan matrix can be diagonalized

by an F4 transformation [11], and since F4 is the automorphism group of the

Jordan product [17 ], the eigenmatrix problem (3) is easily solved in theory.
However, we are not aware of an elementary treatment along the lines pre-

sented here.

Our motivation for studying this problem is the well-known fact that

the Albert algebra is the only exceptional realization of the Jordan formulation

3 Freudenthal’ s early work on this topic was originally distributed in German in mimeographed
form [10], parts of which were later summarized in ref. 11, which we henceforth cite. Many
of these results can also be found in English in ref. 12.
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of quantum mechanics [8, 9, 18, 19]; over an associative division algebra,

the Jordan formalism reduces to standard quantum mechanics. Furthermore,

the four division algebras R , C , H , and O are fundamentally associated with
the Killing/Cartan classification of Lie algebrasÐ corresponding to physical

symmetry groupsÐ into orthogonal, unitary, symplectic, and exceptional

types. This most exceptional quantum mechanical system over the most

exceptional division algebra provides an intriguing framework to study the

basic symmetries of nature.

We begin by summarizing the properties of the Albert algebra in
Section 2. In order to make our work accessible to a wider audience, we

first motivate our subsequent computation by briefly reviewing the Jordan

formulation of quantum mechanics in Section 3, before presenting the mathe-

matical details of the eigenvalue results in Section 4. In Section 5, we include

a brief but suggestive discussion of possible applications, such as its relevance

for our recent work on dimensional reduction [4, 5]. Finally, in the Appendix,
we show explicitly how to diagonalize a generic Jordan matrix using F4

transformations.

2. THE ALBERT ALGEBRA

We consider the Albert algebra consisting of 3 3 3 octonionic Hermitian

matrices, which we will call Jordan matrices.4 The Jordan product (4) of two

such matrices is commutative but not associative. We have in particular that

!2 [ ! + ! (5)

and we define

!3 : 5 !2 + ! [ ! + !2 (6)

which differs from the cube of ! using ordinary matrix multiplication. Other

operations on Jordan matrices are the trace, denoted as usual by tr(!), and
the Freudenthal product [11 ]

! * @ 5 ! + @ 2
1

2
(! tr(@) 1 @ tr(!)) 1

1

2
(tr(!) tr(@) 2 tr(! + @))I

(7)

where I denotes the identity matrix and with the important special case

! * ! 5 !2 2 (tr!)! 1 s (!)I (8)

4 For a review of the basic properties of the octonions, see, for instance refs. 1, 19, and 20.
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where

s (!) 5
1

2
((tr !)2 2 tr(!2)) [ tr(! * !) (9)

There is also trace reversal

!
,

5 ! 2 tr(!)I [ 2 2I * ! (1 0)

and, finally, the determinant

det(!) 5
1

3
tr((! * !) + !) (11)

which can equivalently be defined by

((! * !) + !) 5 (det !)I (12)

Expanding (12) using (8), we obtain the remarkable result that Jordan matrices

satisfy the usual characteristic equation [11 ]

!3 2 (tr !)!2 1 s (!)! 2 (det !)I 5 0 (13)

Explicitly, a Jordan matrix can be written as

! 5 1 p a b

a m c

b c n 2 (14)

with p, m, n P R and a, b, c P O , where the bar denotes octonionic

conjugation. The definitions above then take the concrete form

tr ! 5 p 1 m 1 n

s (!) 5 pm 1 mn 1 pn 2 ) a ) 2 2 ) b ) 2 2 ) c ) 2 (15)

det ! 5 pmn 1 b(ac) 1 b(ac) 2 n ) a ) 2 2 m ) b ) 2 2 p ) c ) 2

The Cayley plane, also called the Moufang plane, consists of those

Jordan matrices 9 which satisfy the restriction [12, 15 ]

9 + 9 5 9; tr 9 5 1 (16)

We will see below that elements of the Cayley plane correspond to projection
operators in the Jordan formulation of quantum mechanics. As shown in ref.

15, the conditions (16) force the components of 9 to lie in a quaternionic
subalgebra of O (which depends on 9). Basic (associative) linear algebra

then shows that each element of the Cayley plane is a primitive idempotent
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(an idempotent which is not the sum of other idempotents), and can be

written as

9 5 vv ² (17)

where v is a three-component octonionic column vector, whose components lie

in the quaternionic subalgebra determined by 9, and which is normalized by

v ² v 5 tr 9 5 1 (18)

Note that v is unique up to a quaternionic phase. Furthermore, using (8) and

its trace (9), it is straightforward to show that, for any Jordan matrix @,

@ * @ 5 0 Û @ + @ 5 (tr @)@ (19)

which agrees with (16) up to normalization, and which is therefore the

condition that that 6 @ can be written in the form (17) [without the restriction
(18) ]. Note further that for any Jordan matrix satisfying (19), the normalization

tr @ can only be zero if v, and hence @ itself, is zero, so that

@ * @ 5 0 5 tr @ Û @ 5 0 (2 0)

since the converse is obvious.

We will need the following useful identities:

(! * !) * (! * !) 5 (det !)! (21)

(!
,

+ !) + (! * !) 5 (det !)!
,

(22)

for any Jordan matrix !, which can be verified by direct computation. Finally,

we also have the remarkable fact that

! * ! 5 0 5 @ * @ Þ (! * @) * (! * @) 5 0 (23)

which follows by polarizing (21),5 and which ensures that the set of Jordan

matrices satisfying (19), consisting of all real multiples of elements of the

Cayley plane, is closed under the Freudenthal product.

Before proceeding further, it is illuminating to consider the restriction

to real column vectors. If u, v, w P R 3, then

2uu ² + vv ² 5 (u ? v)(uv ² 1 vu ² ) (24)

tr(uu ² + vv ² ) 5 (u ? v)2 (25)

5 The necessary fact that det(! 1 @) 5 0 follows from the definition (11) of the determinant
in terms of the triple product, the cyclic properties of the trace of the triple product, and the
assumptions on ! and @.
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where ? denotes the usual dot product (and where the Hermitian conjugate

of a real matrix is of course just its transpose). We also have

2uu ² * vv ² 5 (u 3 v)(u 3 v) ² (26)

where 3 denotes the usual cross product. We can therefore view the Jordan
product as a generalization of the (square of the) dot product, and the Freuden-

thal product as a generalization of the (square of the) cross product.

This somewhat simplified perspective is nevertheless extremely useful

in grasping the essential content of the corresponding octonionic manipula-

tions. For instance, the linear independence of (real) u, v, w is given by

the condition

det (Q) 5 u ? (v 3 w) Þ 0 (27)

where Q is the matrix whose columns are the vectors u, v, w. Note that

QQ ² [ uu ² 1 vv ² 1 ww ² (28)

and of course det(QQ ² ) 5 ) det(Q) ) 2. But using the definition (11) for real u,

v, w leads to the identity

det(uu ² 1 vv ² 1 ww ² ) 5 (u ? (v 3 w))2 (29)

which not only emphasizes the role played by the determinant in determining

linear independence, but also makes plausible the cyclic nature of the trace
of the triple product obtained by polarizing (11).

3. THE JORDAN FORMULATION OF QUANTUM MECHANICS

In the Dirac formulation of quantum mechanics, a quantum mechanical

state is represented by a complex vector v, often written as ) v & , which is

usually normalized such that v ² v 5 1. In the Jordan formulation [8, 9, 19 ],

the same state is instead represented by the Hermitian matrix vv ² , also written

as ) v & ^ v ) , which squares to itself and has trace 1 [compare (16) ]. The matrix
vv ² is thus the projection operator for the state v, which can also be viewed

as a pure state in the density matrix formulation of quantum mechanics. Note

that the phase freedom in v is no longer present in vv ² , which is uniquely

determined by the state (and the normalization condition).

A fundamental object in the Dirac formalism is the probability amplitude

v ² w, or ^ v ) w & , which is not, however, measurable; it is the the squared norm

) ^ v ) w & ) 2 5 ^ v ) w & ^ w ) v & of the probability amplitude which yields the measurable

transition probabilities. One of the basic observations which leads to the

Jordan formalism is that these transition probabilities can be expressed entirely

in terms of the Jordan product of projection operators, since
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(v ² w)(w ² v) [ tr(vv ² + ww ² ) (3 0)

A similar but less obvious translation scheme also exists [19 ] for transition

probabilities of the form ) ^ v ) A ) w & ) 2, where A is a Hermitian matrix, correspond-
ing (in both formalisms) to an observable, so that all measurable quantities

in the Dirac formalism can be expressed in the Jordan formalism.

So far, we have assumed that the state vector v and the observable A
are complex. But the Jordan formulation of quantum mechanics uses only

the Jordan identity

(A + B) + A2 5 A + (B + A2) (31)

for two observables (Hermitian matrices) A and B. As shown in ref. 9, the

Jordan identity (31) is equivalent to power associativity, which ensures that

arbitrary powers of Jordan matricesÐ and hence of quantum mechanical
observables Ð are well defined.

The Jordan identity (31) is the defining property of a Jordan algebra
[8 ], and is clearly satisfied if the operator algebra is associative, which will

be the case if the elements of the Hermitian matrices A, B themselves lie in

an associative algebra. Remarkably, the only further possibility is the Albert

algebra of 3 3 3 octonionic Hermitian matrices [9, 18 ].6 In what follows we
will restrict our attention to this exceptional case.

4. THE JORDAN EIGENVALUE PROBLEM

Consider finally the eigenmatrix problem (3). Note first of all that since

! and 9 are Jordan matrices, the left-hand side is Hermitian, which forces

l to be real.

Suppose first that ! is diagonal. Then the diagonal elements p, m, n
are clearly eigenvalues, with obvious diagonal eigenmatrices. But there are
also other ª eigenvalues,º namely the averages ( p 1 m)/2, (m 1 n)/2,

(n 1 p)/2. However, the corresponding eigenmatricesÐ which are related to

Peirce decompositions [13, 14 ]Ð have only zeros on the diagonal. Thus, by

(20), they cannot satisfy (16), and hence cannot be written in the form (17).

To exclude this case, we therefore restrict 9 in (3) to the Cayley plane (16),
which ensures that the eigenmatrices 9 are primitive idempotents; they really

do correspond to ª eigenvectorsº v. Recall that this forces the components of

9 to lie in a quaternionic subalgebra of O (which depends on 9) even though

the components of ! may not.

6 The 2 3 2 octonionic Hermitian matrices also form a Jordan algebra, but, even though the
octonions are not associative, it is possible to find an associative algebra which leads to the
same Jordan algebra [9, 13 ].
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Next consider the characteristic equation

2 det(! 2 l I ) 5 l 3 2 (tr !) l 2 1 s (!) l 2 (det !)I 5 0 (32)

It is not at first obvious that all solutions l of (32) are real. To see that this

is indeed the case, we note that ! can be rewritten as a 24 3 24 real symmetric

matrix, whose eigenvalues are of course real. However, as discussed in

ref. 1, these latter eigenvalues do not satisfy the characteristic equation (32)!

Rather, they satisfy a modified characteristic equation of the form

det(! 2 l I ) 1 r 5 0 (33)

where r is either of the roots of a quadratic equation which depends on !.

As shown explicitly using Mathematica in Fig. 5 of ref. 2, not only are these

roots real, but they have opposite signs (or at least one is zero). But, as can

be seen immediately using elementary graphing techniques, if the cubic

equation (33) has three real roots for both a positive and a negative value of
r, it also has three real roots for all values of r in between, including r 5 0.

This shows that (32) does indeed have three real roots.

Alternatively, since F4 preserves both the determinant and the trace (and

therefore also s ) [11, 15 ], it leaves the characteristic equation invariant. Since

F4 can be used to diagonalize ! [11, 15 ], and since the resulting diagonal
elements clearly satisfy the characteristic equation, we have another, indirect,

proof that the characteristic equation has three real roots. Furthermore, this

shows that these roots correspond precisely to the three real eigenvalues

whose eigenmatrices lie in the Cayley plane. We therefore reserve the word

ª eigenvalueº for the three solutions of the characteristic equation (32), explic-

itly excluding their averages. The above argument shows that these correspond
to solutions 9 of (3) which lie in the Cayley plane; we will verify this

explicitly below.

Restricting the eigenvalues in this way corresponds to the traditional

eigenvalue problem in the following sense. If !, v Þ 0 lie in a quaternionic

subalgebra of the octonions, then the Jordan eigenvalue problem (3) together

with the restriction (16) becomes

!vv ² 1 vv ² ! 5 2 l vv ² (34)

Multiplying (34) on the right by v and simplifying the result using the trace

of (34) leads immediately to Av 5 l v (with l P R ), that is, the Jordan

eigenvalue equation implies the ordinary eigenvalue equation in this context.

Since the converse is immediate, the Jordan eigenvalue problem (3) (with 9
restricted to the Cayley plane, but ! octonionic) is seen to be a reasonable

generalization of the ordinary eigenvalue problem.

We now show how to construct eigenmatrices 9 of (3), restricted to lie

in the Cayley plane, and with real eigenvalues l satisfying the characteristic
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equation (32). From the definition of the determinant, we have for real l
satisfying (32)

0 5 det(! 2 l I ) 5 (! 2 l I ) + ((! 2 l I ) * (! 2 l I )) (35)

Thus, setting

4l 5 (! 2 l I ) * (! 2 l I ) (36)

we have

(! 2 l I ) + 4 l 5 0 (37)

so that 4l is a solution of (3).
Due to the identity (21), we have

4 l * 4 l 5 0 (38)

If 4 l Þ 0, we can renormalize 4l by defining

3 l 5
4 l

tr(4l )
(39)

Each resulting 3 l is in the Cayley plane, and is hence a primitive idempotent.
Due to (38), we can write

3 l 5 v l v
²
l (4 0)

and we call v l the (generalized) eigenvector of ! with eigenvalue l . Note

that v l does not in general satisfy either (1) or (2). Rather, we have

! + v l v ²
l 5 l v l v

²
l (41)

as well as

v ²
l v l 5 1 (42)

Writing out all the terms and using (10) and (22), one computes

directly that

4l + (! + 4 m ) 5 (4 l + !) + 4m (43)

If l , m are solutions of the characteristic equation (32), then using (37) leads to

m (4l + 4m ) 5 l (4 l + 4 m ) (44)

If we now assume l Þ m and 4l Þ 0 Þ 4 m , this shows that eigenmatrices

corresponding to different eigenvalues are orthogonal in the sense

3 l + 3 m 5 0 (45)

where we have normalized the eigenmatrices.



2910 Dray and Manogue

We now turn to the case 4 l 5 0. We have first that

tr(4l ) 5 tr((! 2 l I ) * (! 2 l I )) 5 s (! 2 l I ) (46)

Denoting the three real solutions of the characteristic equation (32) by l , m ,

n , so that

tr ! 5 l 1 m 1 n (47)

s (!) 5 l ( m 1 n ) 1 m n (48)

we then have

s (! 2 l I ) 5 s (!) 2 2 l tr ! 1 3 l 2 5 ( l 2 m )( l 2 n ) (49)

But by (38) and (20), 4 l 5 0 if and only if tr(4l ) 5 0. Using (46) and (49),

we therefore see that 4 l 5 0 if and only if l is a solution of (32) of multiplicity

greater than 1. We will return to this case below.

Putting this all together, if there are no repeated solutions of the character-

istic equation (32), then the eigenmatrix problem leads to the decomposition

! 5 o
3

i 5 1
l i3 l i (5 0)

in terms of orthogonal primitive idempotents, which expresses each Jordan

matrix ! as a sum of squares of quaternionic columns.7 We emphasize that
the components of the eigenmatrices 3 l i need not lie in the same quaternionic

subalgebra, and that ! is octonionic. Nonetheless, it is remarkable that !
admits a decomposition in terms of matrices which are, individually,

quaternionic.

We now return to the case 4 l 5 0, corresponding to repeated eigenvalues.
If l is a solution of the characteristic equation (32) of multiplicity 3, then

tr ! 5 3 l and s (!) 5 3 l 2. As shown in ref. 1 in a different context, or

using an argument along the lines of footnote 7, this forces ! 5 l I, which

has a trivial decomposition into orthonormal primitive idempotents. We are

left with the case of multiplicity 2, corresponding to ! Þ l I and 4 l 5 0.

Since 4l 5 0, ! 2 l I is (up to normalization) in the Cayley plane,
and we have

! 2 l I 5 6 ww ² (51)

with the components of w in some quaternionic subalgebra of O . While ww ²

is indeed an eigenmatrix of !, it has eigenvalue m 5 tr(!) 2 2 l Þ l .
However, it is straightforward to construct a vector v orthogonal to w in a

suitable sense. For instance, if

7 To see this, one easily verifies that tr(@) 5 0 5 s (@), where @ 5 ! 2 ( l i3 l i. But this
implies that tr(@2) 5 0, which forces @ 5 0.
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w 5 1 xyr 2 (52)

with r P R, then choosing

v 5 1 ) y )
2

2 yx

0 2 (53)

leads to

vv ² + ww ² 5 0 (54)

and only minor modifications are required to adapt this example to the general

case. But (51) now implies that

! + vv ² 5 l vv ² (55)

so that we have constructed an eigenmatrix of ! with eigenvalue l .

We can now perturb ! slightly by adding e vv ² , thus changing the

eigenvalue of vv ² by e . The resulting matrix will have three unequal eigenval-
ues, and hence admit a decomposition (5 0) in terms of orthogonal primitive

idempotents. But these idempotents will also be eigenmatrices of !, and

hence yield an orthogonal primitive idempotent decomposition of !.8 In

summary, decompositions analogous to (5 0) can also be found when there is

a repeated eigenvalue, but the terms corresponding to the repeated eigenvalue

cannot be written in terms of the projections 3 l , and of course the decomposi-
tion of the corresponding eigenspace is not unique.9

8 More formally, with the above assumptions we have

(! 1 e vv ² 2 l I ) * (! 1 e vv ² 2 l I ) 5 (ww ² 1 e vv ² ) * (ww ² 1 e vv ² ) 5 2 e vv ² * ww ²

(56)

The Freudenthal square of (56) is zero by (23), which shows that det(! 1 e vv ² 2 l I ) 5 0
by (21), so that l is indeed an eigenvalue of the perturbed matrix ! 1 e vv ² . Furthermore,
(56) itself is not zero (unless v or w vanishes) since (54) implies that

2tr(vv ² * ww ² ) 5 (v ² v)(w ² w) Þ 0 (57)

which shows that l does not have multiplicity 2.
9 An invariant orthogonal idempotent decomposition when l is an eigenvalue of multiplicity
2 is

(! 2 l I )
,

(! 2 l I )
! 5 m 2 l (58)

tr(! 2 l I ) tr(! 2 l I )

where the coefficient of m 5 tr(!) 2 2 l is the primitive idempotent corresponding to the
other eigenvalue and the coefficient of l is an idempotent, but not primitive. An equivalent
expression was given in ref. 9
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5. DISCUSSION

We have argued elsewhere [4, 5 ] that the ordinary momentum-space

(massless and massive) Dirac equation in 3 1 1 dimensions can be obtained

via dimensional reduction from the Weyl (massless Dirac) equation in

9 1 1 dimensions. This latter equation can be written as the eigenvalue

problem

PÄ c 5 0 (59)

where P is a 2 3 2 octonionic Hermitian matrix corresponding to the 10-

dimensional momentum and tilde again denotes trace reversal. The general

solution of this equation is

P 5 6 u u ² (6 0)

c 5 u j (61)

where u is a two-component octonionic vector whose components lie in the

same complex subalgebra of O as do those of P, and where j P O is arbitrary.

[Such a u must exist since det(P) 5 0.]
It is then natural to introduce a three-component formalism; this approach

was used by Schray [21, 22] for the superparticle. Defining

C 5 1 uj 2 (62)

we have first of all that

3 : 5 C C ² 5 1 P c
c ² ) j ) 2 2 (63)

so that C combines the bosonic and fermionic degrees of freedom. Lorentz

transformations can be constructed by iterating (ª nestingº ) transformations

of the form [23]

P j MPM ² (64)

c j M c (65)

which can be elegantly combined into the transformation

3 j }P} ² (66)

with

} 5 1 M 0

0 1 2 (67)

This in fact shows how to view SO(9, 1) as a subgroup of E6; the rotation
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subgroup SO(9) lies in F4. It turns out that the Dirac equation (59) is equivalent

to the equation

3 * 3 5 0 (68)

which shows both that solutions of the Dirac equation correspond to the

Cayley plane and that the Dirac equation admits E6 as a symmetry group.

Using the particle interpretation from [4, 5] then leads to the interpretation

of (part of) the Cayley plane as representing three generations of leptons.

The modern description of symmetries in nature is in terms of Lie
algebras. For instance, one describes angular momentum by taking an infini-

tesimal rotation, regarding it as a self-adjoint operator, and studying the

resulting eigenvalue problem. Thus, if A is the (self-adjoint version of the)

infinitesimal rotation M, then the rotation (65) leads to the eigenvalue problem

A c 5 l c . But the infinitesimal form of (64) is essentially A + P, although

in the octonionic case, it is not clear how best to make A self-adjoint. It thus
seems natural to study the (3 3 3) Jordan eigenvalue problem associated

with (66).

Finally, we refer to decompositions of the form (5 0) as p-square decom-

positions, where p is the number of nonzero eigenvalues, and hence the

number of nonzero primitive idempotents in the decomposition. If

det(!) Þ 0, then ! is a 3-square. If det(!) 5 0 Þ s (!), then ! is a 2-
square. Finally, if det(!) 5 0 5 s (!), then ! is a 1-square [unless also

tr(!) 5 0, in which case ! [ 0]. It is intriguing that, since E6 preserves

both the determinant and the condition s (!) 5 0, E6 therefore preserves the

class of p-squares for each p. If, as argued above, 1-squares correspond to

leptons, is it possible that 2-squares are mesons and 3-squares are baryons?

APPENDIX: DIAGONALIZING JORDAN MATRICES USING F4

We start with a Jordan matrix in the form (14), and show how to

diagonalize it using nested F4 transformations. As discussed in ref. 15, a set

of generators for F4 can be obtained by considering its SO(9) subgroups, which

in turn can be generated by 2 3 2 trace-free, Hermitian, octonionic matrices.
Just as for the traditional diagonalization procedure, it is first necessary

to solve the characteristic equation for the eigenvalues. Let l be a solution

of (32), and let vv ² Þ 0 be a solution of (3) with eigenvalue l .10 We assume

further that the phase in v is chosen such that

10 It is straightforward to construct v using the results of Section 4, especially since we can
assume without loss of generality that l is an eigenvalue of multiplicity 1.
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v 5 1 xyr 2 (69)

where x, y P O and r P R . Define

}1 5 1
2 r 0 x

0 N1 0

x 0 r 2 @ N1, }2 5 1 N2 0 0

0 2 N1 y

0 y N1 2 @ N2 (7 0)

where the normalization constants are given by N 2
1 5 ) x ) 2 1 r 2 and N 2

2 5
N 2

1 1 ) y ) 2 [ v ² v Þ 0. (If N1 5 0, then ! is already block diagonal.) It is

straightforward to check that

}2 }1 v 5 1 001 2 (71)

and, since everything so far is quaternionic, that

}2 }1 vv ² }1 }2 5 1 0 0 0

0 0 0

0 0 1 2 5 : %3 (72)

But conjugation by each of the }i is an F4, transformation (which is
well defined since each }i separately has components which lie in a complex
subalgebra of O ); this is precisely the form of the generators referred to

earlier. Furthermore, F4 is the automorphism group of the Jordan product (4).

Thus, since

(! 2 l vv ² ) + vv ² 5 0 (73)

then after applying the (nested!) F4 transformation above, we obtain

(}2(}1(! 2 l I )}1) }2) + %3 5 0 (74)

which in turn forces

}2(}1!}1)}2 5 1 X 0

0 l 2 (75)

where

X 5 1 s z

z t 2 (76)

is a 2 3 2 octonionic Hermitian matrix (with z P O and s, t P R ).
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The final step amounts to the diagonalization of X, which is easy. Let

m be any eigenvalue of X [which in fact means that it is another solution of

(32) ] and set

}3 5 1 m 2 t 0 0

0 t 2 m z

0 z N3 2 @ N3 (77)

where N3 5 ( m 2 t)2 1 ) z ) 2. (If N3 5 0, X is already diagonal.) This finally

results in

}3(}2(}1!}1)}2) }3 5 1 m 0 0

0 tr(X ) 2 m 0

0 0 l 2 (78)

and we have succeeded in diagonalizing ! using F4 as claimed.
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